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          So far, we have been looking at the design of combinational circuits. We will now 

turn our attention to the design of sequential circuits. Recall that the outputs of 

sequential circuits are dependent on not only their current inputs (as in combinational 

circuits), but also on all their past inputs. Because of this necessity to remember the 

history of inputs, sequential circuits must contain memory elements. The car security 

system from Section 2.9 is an example of a combinational circuit. In that example, the 

siren is turned on when the master switch is on and someone opens the door. If you close 

the door afterwards, then the siren will turn off immediately. For a more realistic car 

security system, we would like the siren to remain on even if you close the door after it 

was first triggered. In order for this modified system to work correctly, the siren must be 

dependent on not only the master switch and the door switch but also on whether the 

siren is currently on or off. In other words, this modified system is a sequential circuit 

that is dependent on both the current and on the past inputs to the system. In order to 

remember this history of inputs, sequential circuits must have memory elements. 

Memory elements, however, are just like combinational circuits in the sense that they 

are made up of the same basic logic gates. What makes them different is in the way 

these logic gates are connected together. In order for a circuit to “remember” its current 

value, we have to connect the output of a logic gate directly or indirectly back to the 

input of that same gate.  

We call this a feedback loop circuit, and it forms the basis for all memory elements. 

Combinational circuits do not have any feedback loops. Latches and flip-flops are the 

basic memory elements for storing information. Hence, they are the fundamental 

building blocks for all sequential circuits. A single latch or flip-flop can store only one 

bit of information. This bit of information that is stored in a latch or flip-flop is referred 

to as the state of the latch or flip-flop. Hence, a single latch or flip-flop can be in either 

one of two states: 0 or 1. We say that a latch or a flip-flop changes state when its content 

changes from a 0 to a 1 or vice versa. This state value is always available at the output. 

Consequently, the content of a latch or a flip-flop is the state value, and is always equal 

to its output value. The main difference between a latch and a flip-flop is that for a latch, 

its state or output is constantly affected by its input as long as its enable signal is 

asserted. In other words, when a latch is enabled, its state changes immediately when its 

input changes. When a latch is disabled, its state remains constant, thereby, 

remembering its previous value. On the other hand, a flip-flop changes state only at the 

active edge of its enable signal, i.e., at precisely the moment when either its enable 

signal rises from a 0 to a 1 (referred to as the rising edge of the signal), or from a 1 to a 0 
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(the falling edge). However, after the rising or falling edge of the enable signal, and 

during the time when the enable signal is at a constant 1 or 0, the flip-flop’s state 

remains constant even if the input changes. In a microprocessor system, we usually want 

changes to occur at precisely the same moment. Hence, flip-flops are used more often 

than latches, since they can all be synchronized to change only at the active edge of the 

enable signal. This enable signal for the flip-flops is usually the global controlling clock 

signal. Historically, there are basically four main types of flip-flops: SR, D, JK, and T. 

The major differences between them are the number of inputs they have and how their 

contents change. Any given sequential circuit can be built using any of these types of 

flip-flops (or combinations of them). However, selecting one type of flip-flop over 

another type to use in a particular sequential circuit can affect the overall size of the 

circuit. Today, sequential circuits are designed mainly with D flip-flops because of their 

ease of use. This is simply a tradeoff issue between ease of circuit design versus circuit 

size. Thus, we will focus mainly on the D flip-flop. Discussions about the other types of 

flip-flops can be found in Section 6.14. In this chapter, we will look at how latches and 

flip-flops are designed and how they work. Since flip-flops are at the heart of all 

sequential circuits, a good understanding of their design and operation is very important 

in the design of microprocessors. 

1- SR Latch  

         In order to change the state for the bistable element, we need to add external inputs 

to the circuit. The simplest way to add extra inputs is to replace the two inverters with 

two NAND gates, as shown in Figure 1.(a). This circuit is called an SR latch. In addition 

to the two outputs Q and Q', there are two inputs S 'and R 'for set and reset, respectively. 

Just like the bistable element, the SR latch can be in one of two states: a set state when 

Q= 1, or a reset state when Q= 0. Following the convention, the primes in Sand R denote 

that these inputs are active-low (i.e., a 0 asserts them, and a 1 de-asserts them). To make 

the SR latch go to the set state, we simply assert the S 'input by setting it to 0 (and de-

asserting R'). It doesn’t matter what the other NAND gate input is, because 0 NAND 

anything gives a 1, hence Q= 1, and the latch is set. If S 'remains at 0 so that Q(which is 

connected to one input of the bottom NAND gate) remains at 1, and if we now de-assert 

R'(i.e., set R' to a 1) then the output of the bottom NAND gate will be 0, and so, Q'= 0. 

This situation is shown in Figure 6.2(d) at time t0. From this current situation, if we now 

de-assert S 'so that S'= R'= 1, the latch will remain in the set state because Q'(the second 

input to the top NAND gate) is 0, which will keep Q= 1, as shown at time t1. At time t2, 
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Reset 

Set 

we reset the latch by making R'= 0 (and S'= 1). With R 'being a 0, Q 'will go to a 1. At 

the top NAND gate, 1 NAND1 is 0, thus forcing Q to go to 0. If we de-assert R 'next so 

that, again, we have S'= R'= 1, this time the latch will remain in the reset state, as shown 

at time t3.  

Notice the two times (at t1and t3) when both S' and  R 'are de-asserted (i.e., S'= R'= 1). 

At t1, Q is at a 1; whereas, at t3, Q is at a 0. Why is this so? What is different between 

these two times? The difference is in the value of Q immediately before those times. The 

value of Q right before t1is 1; whereas, the value of Q right before t3is 0. When both 

inputs are de-asserted, the SR latch remembers its previous state. Previous to t1, Q has 

the value 1, so at t1, Q remains at a 1. Similarly, previous to t3, Q has the value 0, so at 

t3, Q remains at a 0. 

 

 

 

(a)                                                                                        (b) 

 
 

Fig. 1 SR latch: (a) circuit using NAND gate; (b) Truth table; (c) logic symbol; (d) sample 

trace. 

 

R S Q Q' 

0 0 Not allowed 

0 1 0 1 

1 0 1 0 

1 1 No change 
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        If both S' and R' are asserted (i.e., S'= R'= 0), then both Q and Q' are equal to a 1, as 

shown at time t4, since 0 NAND anything gives a 1. Note that there is nothing wrong 

with having Q equal to Q'. It is just because we named these two points Q and Q' that we 

don’t like them to be equal. However, we could have used another name say, Pin stead 

of Q'. If one of the input signals is de-asserted earlier than the other, the latch will end up 

in the state forced by the signal that is de-asserted later, as shown at time t5. At t5, R' is 

de-asserted first, so the latch goes into the set state with Q= 1, and Q'= 0. A problem 

exists if both S and R' are de-asserted at exactly the same time, as shown at time t6. Let 

us assume for a moment that both gates have exactly the same delay and that the two 

wire connections between the output of one gate to the input of the other gate also have 

exactly the same delay. Currently, both Q and Q' are at a 1. If we set S 'and R' to a 1 at 

exactly the same time, then both NAND gates will perform a 1 NAND1 and will both 

output a 0 at exactly the same time. The two 0’s will be fed back to the two gate inputs 

at exactly the same time, because the two wire connections have the same delay. This 

time around, the two NAND gates will perform a 1 NAND0 and will both produce a 1 

again at exactly the same time. This time, two 1’s will be fed back to the inputs, which 

again will produce a 0 at the outputs, and so on and on. This oscillating behavior, called 

the critical race, will continue indefinitely until one outpaces the other. If the two gates 

do not have exactly the same delay then, the situation is similar to de-asserting one input 

before the other, and so, the latch will go into one state or the other. However, since  

we do not know which is the faster gate, therefore, we do not know which state the latch 

will end up in. Thus, the latch’s next state is undefined.  

Of course, in practice, it is next to impossible to manufacture two gates and make the 

two connections with precisely the same delay. In addition, both S'and R'need to be de-

asserted at exactly the same time. Nevertheless, if this circuit is used in controlling some 

mission-critical device, we don’t want even this slim chance to happen. In order to avoid 

this non-deterministic behavior, we must make sure that the two inputs are never de-

asserted at the same time. Note that we do want the situation when both of them are de-

asserted, as in times t1and t3, so that the circuit can remember its current content. We 

want to de-assert one input after de-asserting the other, but just not de-asserting both of 

them at exactly the same time. In practice, it is very difficult to guarantee that these two 

signals are never de-asserted at the same time, so we relax the condition slightly by not 

having both of them asserted together. In other words, if one is asserted, then the other 

one cannot be asserted. Therefore, if both of them are never asserted simultaneously, 

then they cannot be de-asserted at the same time. A minor side benefit for not having 
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Set 

Reset 

both of them asserted together is that Q and Q' are never equal to each other. Recall that, 

from the names that we have given these two nodes, we do want them to be inverses of 

each other.  

From the above analysis, we obtain the truth table in Figure 1.(b) for the NAND 

implementation of the SR latch. In the truth table, Q and Q next actually represent the 

same point in the circuit. The difference is that Q is the current value at that point, while 

Q next is the new value to be updated in the next time period. Another way of looking at 

it is that Q is the input to a gate, and Q next is the output from a gate. In other words, the 

signal Q goes into a gate, propagates through the two gates, and arrives back at Q as the 

new signal Q ext. Figure 1.(c) shows the logic symbol for the SR latch. 

 

       The SR latch can also be implemented using NOR gates, as shown in Figure 2.(a). 

The truth table for this implementation is shown in Figure 2.(b). From the truth table, we 

see that the main difference between this implementation and the NAND 

implementation is that for the NOR implementation, the Sand R inputs are active-high, 

so that setting S to 1 will set the latch, and setting R to 1 will reset the latch. However, 

just like the NAND implementation, the latch is set when Q= 1, and reset when Q= 0. 

The latch remembers its previous state when S = R= 0. When S= R= 1, both Q and Q' 

are 0. The logic symbol for the SR latch using NOR implementation is shown in Figure 

2.(c). 

 

 

 

                                                         

 

 

 

 

 

 

 

                                                                     (b) 

 

Figure 2.SR latch: (a) circuit using NOR gates; (b) truth table; (c) logic symbol. 

R S Q Q' 

 0 0 No change 

 0 1 1 0 

1 0 0 1 

1 1 Not allowed 
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D Latch  

        Recall from Section 1 that the disadvantage with the SR latch is that we need to 

ensure that the two inputs, S and R, are never de-asserted at exactly the same time, and 

we said that we can guarantee this by not having both of them asserted. This situation is 

prevented in the D latch by adding an inverter between the original S' and R' inputs. This 

way, S' and R' will always be inverses of each other, and so, they will never be asserted 

together. The circuit using NAND gates and the inverter is shown in Figure 3(a). There 

is now only one input D(for data). When D= 0, then S'= 1 and R'= 0, so this is similar to 

resetting the SR latch by making Q= 0. Similarly, when D= 1, then S'= 0 and R'= 1, and 

Q will be set to 1. From this observation, we see that Q next always gets the same value 

as the input D, and is independent of the current value of Q. Hence, we obtain the truth 

table for the D latch, as shown in Figure 3(b).  

Comparing the truth table for the D latch shown in Figure 3(b) with the truth table for 

the SR latch shown in Figure 1(b), it is obvious that we have eliminated not just one, but 

three rows, where S'= R'. The reason for adding the inverter to the SR latch circuit was 

to eliminate the row where S'= R'= 0. However, we still need to have the other two rows 

where S'= R'= 1 in order for the circuit to remember its current value. By not being able 

to set both S' and R' to 1, this D latch circuit has now lost its ability to remember. Q next 

cannot remember the current value of Q, instead it will always follow D. The end result 

is like having a piece of wire where the output is the same as the input! 

 

Figure 3.D latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol.  
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Clock  

Latches are known as level-sensitive because their outputs are affected by their inputs as 

long as they are enabled. Their memory state can change during this entire time when 

the enable signal is asserted. In a computer circuit, however, we do not want the memory 

state to change at various times when the enable signal is asserted. Instead, we like to 

synchronize all of the state changes to happen at precisely the same moment and at 

regular intervals. In order to achieve this, two things are needed:  

1) a synchronizing signal, and 2) a memory circuit that is not level-sensitive. The 

synchronizing signal, of course, is the clock, and the non-level-sensitive memory circuit 

is The Flip-Flop.  

          The clock is simply a very regular square wave signal, as shown in Figure 3. We 

call the edge of the clock signal when it changes from 0 to 1 the rising edge. Conversely, 

the falling edge of the clock is the edge when the signal changes from 1 to 0. We will 

use the symbol to denote the rising edge and for the falling edge. In a computer circuit, 

either the rising edge or the falling edge of the clock can be used as the synchronizing 

signal for writing data into a memory element. This edge signal is referred to as the 

active edge of the clock. In all of our examples, we will use the rising clock edge as the 

active edge. Therefore, at every rising edge, data will be clocked or stored into the 

memory element.  

A clock cycle is  the time from one rising edge to the next rising edge or from one 

falling edge to the next falling edge. The speed of the clock, measured in hertz (Hz), is 

the number of cycles per second. Typically, the clock speed for a microprocessor in an 

embedded system runs around 20 MHz, while the microprocessor in a personal 

computer runs upwards of 2 GHz and higher. A clock period is the time for one clock 

cycle (seconds per cycle), so it is just the inverse of the clock speed. The speed of the 

clock is determined by how fast a circuit can produce valid results. For example, a two-

level combinational circuit will have valid results at its output much sooner than, say, an 

ALU can. Of course, we want the clock speed to be as fast as possible, but it can only be 

as fast as the slowest circuit in the entire system. We want the clock period to be the 

time it takes for the slowest circuit to get its input from a memory element, operate on 

the data, and then write the data back into a memory element. More will be said on this 

in later sections.  
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Figure 4. Clock signal. 

RS Flip-Flop  

An RS flip-flop is a clocked SR latch. This means that the RS flip-flop is same as the SR 

latch with a clock input. The SR flip-flop is an important circuit because all other flip-

flops are built from it. Figure 5. shows an RS flip-flop.  

The RS flip-flop contains an SR latch with two more NAND gates. It has three inputs (S, 

CLK, R) and two outputs (Q and D). When S = 0 and R = 0 and CLK = 1, the outputs of 

both NAND gates #1 and #2 are 1. This means that the output of NAND gate #3 is 0 if  

= 1 and is 1 if D = 0. This means that Q is unchanged as long as S = 0 and R = 0. On the 

other hand, the output of NAND gate #4 is 0 if Q = 1 and is 1 if Q = 0. Thus, Q is also 

unchanged. Suppose that S = 1, R = 0, and CLK = 1. This will produce 0 and 1 

 

Figure 5. RS Flip-Flop with Clock. 
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 D Flip-Flop  

Figure 6. shows the logic diagram, truth table and the logic symbol of a D flip-flop 

(Delay flip-flop). This type of flip-flop ensures that the invalid input combinations S = 1 

and R = 1 for the RS flip-flop can never occur. The D flip-flop has two inputs (D and 

CLK) and two outputs (Q and Q). The D input is same as the S input and the 

complement of D is applied to the R input. Thus, R and S can never be equal to 1 

simultaneously. The D flip-flop (called gated D flip-flop) transfers the D input to output 

Q when CLK = 1. Note that if CLK = 0, one of the inputs to each of the last two NAND 

gates will be 1 ; thus, outputs of the D flip-flop remain unchanged regardless of the 

values of the D input. The D flip-flop is also called a “transparent latch.” The term 

“transparent” is on the fact that the output Q follows the D input when CLK = 1. 

Therefore, transfer of input to outputs is transparent, as if the flip-flop were not present. 

 

Figure 6. D Flip-Flop with Clock. 
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JK Flip-Flop  

The JK flip-flop is a modified version of the RS flip-flop such that the Sand R inputs of 

the RS flip-flop correspond to the J and K inputs of the JK flip-flop. Furthermore, the 

invalid inputs S = 1 and R = 1 are allowed in the JK flip-flop. When J = 1, K = 1, and 

Clk = 1, the JK flip-flop complements its output. Otherwise, the meaning of the J and K 

inputs is the same as that of the S and R inputs respectively. Figure 5.6 shows a logic 

diagram of JK flip- flop along with its truth table. This is a NANDNOR implementation, 

and is called a gated JK flip-flop. The circuit operation of Figure 7.(a) is discussed in the 

following:  

i)  Suppose Q = 1,  = 0, and CLK = 1. With J = 0 and K = 0, the outputs of inverters 140  

Fundamentals of Digital Logic and Microcomputer Design #2 and #5 are both 0. This 

means that the outputs of NOR gates #3 and #6 are 1 and 0 respectively. Therefore, the 

outputs of the flip-flop are unchanged  

ii)  Suppose Q = 0, e = 1, and CLK = 1. With J= 1 and K = 0, the outputs of inverters #2 

and #5 are 0 and 1 respectively. This means that a 0 is produced at the output of NOR 

gate #6 (e  = 0). Thus, apply a 0 at one of the inputs of NOR gate #3 generating a 1 at its 

output (Q = 1). The JK flip-flop is therefore set to 1 (Q = 1 and = 0 and CLK = 1. With 

J= 0 and K = 1, the outputs of the inverter #2 and #5 are 1 and 0 respectively. This 

means that the output of NOR gate #3 is 0. This will produce a 1 at the output of NOR 

gate #6. Thus, the flip-flop is cleared to zero (Q =O ande= 1).  

iv) Suppose Q = 1,  = 0, and CLK = 1. With J = 1 and K = 1, the outputs of inverters #2 

and #5 are 1 and 0 respectively. This will produce a 0 at the output of NOR gate #3 (Q = 

0). This in turn will apply 0 at one of the inputs of NOR gate #6, making its output 

HIGH (e  = 1). Thus, the output of the JK flip-flop is complemented. The other rows in 

the truth table of the JK flip-flop can similarly be verified. JK flip-flops are never built 

using the schematic of figure 5.6(a). This is because  the schematic of Figure 5.6(a) will 

generate oscillations. For example, when J=1, K=l, and Clk =1, the outputs (Q and g) are 

complemented with the clock staying high after the first transition ofthe outputs. Since 

the outputs are fed back, the outputs will change continuously after being complemented 

once, causing oscillations. This undesirable behavior can be avoided using master-slave 

(edge-triggered) flip-flops discussed in the next section. = 0).  

iii) Suppose Q = 1,  
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Figure 7. JK Flip-Flop with Clock. 

T Flip-Flop  

       The T (Toggle) flip-flop complements its output when the clock input is applied 

with T = 1 ; the output remains unchanged when T = 0. The name “toggle” is based on 

the fact that the T flip-flop toggles or complements its output when the clock input is 1 

with T = 1. T flip-flop is not available commercially. However, T flip-flop can be 

obtained from JK flip- flop in two ways. In the first approach, the J and K inputs of the 

JK flip-flop can be tied together to provide the T input; the output is complemented 

when T = 1 at the clock while the output remains unchanged when T = 0 at the clock. In 

the second approach, the J and K inputs can be tied to high; in this case, T is the clock 

input.  

Figure 8. T Flip-Flop with Clock. 
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Master-Slave Flip-Flop  

As mentioned before, sequential circuits contain combinational circuits with flip-flops in 

the feedback loop. These flip-flops generate outputs at the clock based on the inputs 

from 

 

Figure 9. Clock Pulses 

 

Figure 10. Typical Master-Slave D Flip-Flop 
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      The combinational circuits. The feedback loop can create an undesirable situation if 

the outputs from the combinational circuits that are connected to the flip-flop inputs 

change values at the clock pulse simultaneously when flip-flops change outputs. This 

situation can be avoided if the flip-flop outputs do not change until the clock pulse goes 

back to 0. One way of accomplishing this is to ensure that the outputs of the flip-flops 

are affected by the pulse transition rather than pulse duration of the clock input. To 

understand this concept, consider the clock pulses shown in Figure 9. There are two 

types of clock pulses: positive and negative. A positive pulse includes two transitions: 

logic 0 to logic 1 and logic 1 to logic 0. A negative pulse also goes through two 

transitions: logic 1 to logic 0 and logic 0 to logic 1. Assume that a positive pulse is used 

as the clock input of a D flip-flop. With the D input = 1, the output of the flip-flop will 

become 1 when the clock pulse reaches logic 1. Now, suppose that the D input changes 

to zero but the clock pulse is still 1. This means that the flip-flop will have a new output, 

0. In this situation, the output of one flip-flop cannot be connected to the input of 

another when both flip-flops are enabled simultaneously by the same clock input. This 

problem can be avoided if the flip-flop is clocked by either the leading or the trailing 

edge rather than the signal level of the pulse. A master-slave flip-flop is used to 

accomplish this. Figure 10. shows a typical master-slave D flip-flop. A master-slave 

flip-flop contains two independent flip-flops. Flip-flop #1 (FF #1) works as a master 

flip-flop, whereas the flip-flop (FF #2) is a slave. An inverter is used to invert the clock 

input to the slave flip-flop. Assume that the CLK is a positive pulse. Suppose that the D 

input of the master flip-flop (FF #I) is 1 and the CLK input = 1 (leading edge). The 

output of the inverter will apply a 0 at the CLK input of the slave flip-flop (FF #2). 

Thus, FF #2 is disabled. The master flip-flop will transfer a 1 to its Q output. Thus, X 

will be 1. At the trailing edge of the CLK input, the CLK input of the master flip-flop is 

0. Thus, FF #1 is disabled. The inverter will apply a 1 at the CLK input of the FF #2. 

Thus, 1 at the X input (D input of FF #2) will be transferred to the Q output of FF #2. 

When the CLK goes back to 0, the master flip-flop is separated. This avoids any change 

in the other inputs to affect the master flip-flop. The slave flip-flop will have the same 

output as the master. 

 

Sources: 

1. Digital Logic and Microprocessor Design With VHDL. 

2. Fundamentals of Digital Logic and Microcomputer Design, 5th Ed. 

 

 


